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A B S T R A C T

Based on the joint HCPMMP parcellation method we developed before, which divides the cortical brain into 360
regions, the concept of ordered core features (OCF) is first proposed to reveal the functional brain connectivity
relationship among different cohorts of Alzheimer's disease (AD), late mild cognitive impairment (LMCI), early
mild cognitive impairment (EMCI) and healthy controls (HC). A set of core network features that change
significantly under the specifically progressive relationship were extracted and used as supervised machine
learning classifiers. The network nodes in this set mainly locate in the frontal lobe and insular, forming a narrow
band, which are responsible for cognitive impairment as suggested by previous finding. By using these features,
the accuracy ranged from 86.0% to 95.5% in binary classification between any pair of cohorts, higher than
70.1%–91.0% when using all network features. In multi-group classification, the average accuracy was 75% or
78% for HC, EMCI, LMCI or EMCI, LMCI, AD against baseline of 33%, and 53.3% for HC, EMCI, LMCI and AD
against baseline of 25%. In addition, the recognition rate was lower when combining EMCI and LMCI patients into
one group of mild cognitive impairment (MCI) for classification, suggesting that there exists a big difference
between early and late MCI patients. This finding supports the EMCI/LMCI inclusion criteria introduced by ADNI
based on neuropsychological assessments.
1. Introduction

Worldwide, around 50 million people have Alzheimer's disease (AD)
or a related dementia, and there are nearly 10 million new cases every
year. These diseases are expected to triple by 2050. AD is a chronic
neurodegenerative dysfunction that may contribute to nearly 60%–70%
of dementia [1], but only 25% people with AD have been diagnosed. The
progression from healthy state to AD spans over many years. These
changes can be measured using medical imaging [2] and other tech-
niques. The clinical and pathological characteristics of AD have attracted
much attention in recent years. Researchers are working on ways to
combine methods from various fields for prodromal diagnosis, preven-
tion and treatment. Methods include neuropsychological assessment,
eng).
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biochemistry pathology, genetic analysis, advanced medical imaging,
etc. Arevalo-Rodriguez et al. used the mini–mental state examination
(MMSE) to estimate the severity and progression of cognitive impair-
ment, and tried to detect AD in people with MCI [3]. Nineteen areas were
found in genes that appear to affect this disease by genome-wide asso-
ciation studies [4]. Another research proved that tau protein abnormal-
ities initiate the disease cascade [5]. To establish indicators of AD during
the preclinical stage for early diagnosis and intervention is crucial. The
main focus of current studies is to predict the conversion of MCI to AD.
Despite that many advances have been made in developing biomarkers
for AD using neuroimaging approaches [6], researchers suggest that no
single biomarker can accurately diagnose AD by itself alone. Therefore,
people started to look at the combination of biomarkers. For instance,
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biomarkers assessed through imaging and cerebrospinal fluid yields
better diagnostic accuracy [7].

Recently, with the advancement of magnetic resonance imaging
(MRI), high temporal and spatial resolution facilitates the exploration of
the most sophisticated organ of human being: the brain. Researchers
believe that structural or functional alterations in the brain bring irre-
versible cognitive disorders [8]. Various neuroimaging technologies like
functional MRI (fMRI) are becoming widely adopted. A key development
of fMRI is functional connectivity analysis, which explores the brain from
a network perspective. Functional connectivity has become an important
tool in studying AD. Researchers compared the connectivity patterns of
the default mode network (DMN) by using resting state fMRI with 12
amnestic mild cognitive impairments, 13 AD patients and 13 healthy
controls, and found that AD was associated with opposing connectivity
effects in the DMN (decreased) and frontal networks (enhanced) [9].
Wang et al. found increased functional connectivity between the left
hippocampus and the right lateral prefrontal cortex and diminished
rightward asymmetry of hippocampal connectivity in AD [10]. Graph
theoretical approaches were combined with automated anatomical la-
beling (AAL) atlas on fMRI data to study functional brain network
alteration in patients with AD [11]. However, there is no consensus on
which part of brain plays a key role in the progressive degeneration of
Alzheimer's disease. It is more likely to be attributed to the variety of
brain parcellation such as Brodmann, Talairach, MNI structural atlas, or
probabilistic cerebellar atlas [12] etc. Since 2016, a multi-modal par-
cellation (HCP MMP) was delineated by Glasser et al. based on human
brain cortical architecture, function, connectivity, and topography
characteristics [13]. 180 areas per hemisphere were proposed and a
machine-learning classifier was designed to recognize the multi-modal
'fingerprint' of each cortical area. It would be of great help to study the
brain in health and even disease by using the fine-grained parcellation.

Graph theory-based analysis of complex brain networks applied to
AD/MCI classification using AI technologies have attracted wide atten-
tion since last decade. In 2010, Rubinov et al. introduced an effective
approach for the study of structural and functional connectivity in the
human brain. It originates from the topological analysis method for social
networks. A complex network in brain is defined by a collection of nodes
(regions of interest) and links (correlation coefficient or any other in-
formation between nodes) between pairs of nodes. The definition of the
nodes is through parcellation of the brain. Four types of networks can be
generated based on the weight and directionality within edges. The
functional integration and segregation can be characterized using the
Brain Connectivity Toolbox (BCT) [14]. Meanwhile, with the develop-
ment of artificial intelligence, the network metrics can be trained in
learning models and have achieved high classification accuracy for AD.
Frank de Vos et al. computed eight functional connectivity measures as
predictors in an elastic net logistic regression, and obtained the area
under the receiver operating characteristic curve (AUC) of 0.85 in a
classification of 77 AD patients and 173 controls [15]. Andr�es Ortiz et al.
trained an unsupervised deep learning architecture for the early diag-
nosis of the AD and provided an accuracy value up to 0.90 [16]. They
reported that 44 features were found to achieve 88.4% accuracy based on
a parcellation of 264 putative areas as well as the AAL template. Our
previous study improved the performance of binary recognition between
any pair of cohorts for healthy controls (HC), early MCI (EMCI), late MCI
(LMCI) and AD, by computing 3,240 network measures as features in
machine learning [17]. Although recent studies have achieved pretty
good capability in binary-group recognition, further research is needed
from two aspects. One is the interpretation for the selected features in
machine learning or deep neural network (DNN); the other is the capacity
in multi-group classification. Facing hundreds of thousands of candidate
features, it is not easy to explain why those selected areas are suitable to
distinguish patients from healthy controls despite the excellent behavior
of classification. Especially for DNN, inexplicable number of medial
nodes and layers make it even hard to reproduce results. In fact, this
might be the reason for the failure of multi-group classification.
2

In feature selection, the algorithm always randomly searches for an
appropriate dimension by which classification error rate declines. It is
inexplicable why these selected network metrics are suitable for classi-
fication. Therefore, analysis of functional connectivity characteristics
before numerical feature selection is necessary, which helps to interpret
the underlying mechanism of these features in separating patients and
healthy controls.

In this study, we aimed at optimizing feature selection to improve
classification accuracy of various stages in AD progression. We started
with the non-HCP preprocessing method to prepare and parcellate
structural and functional brain MRI data into 360 areas as the network
nodes. An ordered core feature set was found following analysis of
variability to reduce the dimension of training data. The criterion of
ordered core feature is that significant alterations with specifically pro-
gressive relationship (AD > LMCI > EMCI > HC or in the reverse order)
must exist in certain regions rather than the whole brain in EMCI, LMCI,
AD compared with HCs. Finally, machine learning was used as the vali-
dation method to test the effectiveness of selected features.

2. Material and methods

2.1. Preparation and parcellation

The overall analysis pipeline proposed in this study is depicted in
Figure 1. Subjects acquired from ADNI2 were firstly preprocessed by
preparation and parcellation, in which the raw DICOM data were con-
verted into CIFTI space and registered into the HCP MMP atlas with 360
areas. A 360 � 360 dense matrix was generated by computing the cor-
relation coefficients between any two brain areas. Dynamic proportion of
the strong weights (dPSW) value varying with individual was used to
remove spurious connections and produce both weighted and binary
adjacent networks. The optimal dPSW is computed for each subject in
groups.

T1-weighted MPRAGE and resting-state fMRI data were processed
firstly by J-HCPMMP [17] method. In this paper, a HCP-based multi--
modal parcellation of human cerebral cortex (i.e. HCP MMP) was used to
parcellate human brain into 180 areas per hemisphere. Although HCP
MMP explicitly requires MRI data to follow HCP sampling protocols,
J-HCPMMP helps to convert non-HCP style ADNI2 data into HCP CIFTI
(Connectivity Informatics Technology Initiative) space using only T1W
and fMRI data, without T2W data or field map information. Several brain
data processing toolkits were used in J-HCPMMP including FreeSurfer,
fMRIPrep, CIFTIFY and HCP minimal preprocessing pipeline. It is basi-
cally a fully automatic process with default parameters. First, some
necessary steps like motion correction, normalization, segmentation and
smoothing etc. are carried out in FreeSurfer for the structural MRI data by
the help of recon-all command. Second, fMRIPrep pipeline is used for the
registration of functional MRI data. The execution process is also auto-
matic with default set except for the surface preprocessing option. The
cerebral cortex is registered into the CIFTI gray-ordinates space which
consists of 32,492 vertices per hemisphere for cortical surface and 26,298
NIFTI voxels for subcortical volume. 360 HCP MMP areas in cortical
surface are delineated based on these 32,492 � 2 ¼ 64,984 vertices.
Thus, we set the surface preprocessing parameter with –cifti-output flag
to preprocess BOLD as CIFTI dense timeseries. Finally, we use CIFTIFY
tools to convert the FreeSurfer output directory into the CIFTI space and
project one subject's NIFTI functional scan to the CIFTI dense series file
(*. dtseries). Two commands are executed successively: ciftify_recon_all
and ciftify_subject_fmri with default parameters. All the fMRI data within
these 360 areas were then used for constructing the brain connectivity
network.

2.2. Connectivity network construction

To study the functional association between brain regions, Pearson
correlation coefficients were calculated using fMRI signals in the 360



Figure 1. Analysis pipeline proposed in this study.
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parcellated areas. Brain connectivity network was constructed by
defining each area as a graph node and correlation coefficient as the
weight of the graph edge between nodes. Thus, for each subject, func-
tional connectivity of human brain was represented by a 360 � 360
correlation adjacency matrix, and all diagonal weights (representing self-
connections) were set to zero. Initially, the matrix would be dense
because of noisy correlations and spurious connections due to the scan-
ning environment. An appropriate thresholding is necessary prior to
further network anal, 19, ysis. Various methods for de-noising were
described in literatures [18, 19, 20], in this study, the well-known Brain
Connectivity Toolbox (https://sites.google.com/site/bctnet/) was adop-
ted to generate sparse network by preserving a dynamic proportion of the
strongest weights (dynamic PSW, dPSW). It was defined as the number of
retained strong weights divided by the total number of weights, given by
Eq. (1). In ref [21], the optimal threshold value was determined by graph
theory-based measures global cost efficiency (GCE) and global efficiency
(E), described in Eq. (2) and Eq. (3):

dPSW¼ the number of retained strong weights
the total number of weights

(1)

E¼1
n

X
i2N

Ei ¼ 1
n

X
i2N

P
j2N;j6¼idij
n� 1

(2)

max
dPSW

ðGCEÞ¼E� dPSW (3)

where Ei is the efficiency of node i, dij is the shortest path length between
node i and j, n is the total number of nodes in the correlation network,
andN is the vector of all nodes. A range of candidate PSWs from 0.01 to 1
3

with a step 0.05 was tested for maximizing the GCE value. For each
subject, the optimal PSW was different.

We calculated dPSW varying from person-to-person instead of a
group average value. The optimal dPSWs maintain at a stable level with
the normal aging (HC group), while for other groups the linear fitting
curves indicate a decline of PSW, meaning that fewer functional con-
nectivity is effective enough to keep brain working well with the
increasing of patients' age. Larger dPSWs are gotten which compensate
the process of binarization that discards correlation coefficients from the
weighted network. Weighting information in brain network is often used
to quantitatively analyze the connectivity among brain regions, while the
overall communication architecture can be characterized by a binary
signal between regions: topological connected or not. So, the binary brain
connectivity network was also constructed in this study. After the optimal
PSW was determined, the remaining strongest connections in the
network would be set to 1 and others would be 0.
2.3. Measures of brain networks

Previous studies reported that graph-based measures of brain
network could be effective to reveal characteristics of topological or
functional connectivity in human brain. We computed various global and
local measures for both weighted and binary networks to quantitatively
analyze the significant differences among subjects, and further used them
as machine learning features to classify patients and HCs.

Global measures, including global efficiency (E), maximized modu-
larity, assortativity coefficient, optimal number of modules, small
worldness index (SWI), characteristic path length (CPL) and mean clus-
tering coefficient (MCC), were thought to be related to the overall per-

https://sites.google.com/site/bctnet/
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formance of the human brain. They have only one value (1 � 1) for each
subject. All these measures could be computed directly through BCT
software except for SWI, which was given by Eq. (4):

SWI¼MCC=MCCrand

CPL=CPLrand
(4)

where the subscript rand represented the average value came from the
randomized networks.

In this study, we set the number of randomized networks to be 100.
Different local measures in weighted and binary networks were calcu-
lated, which characterized regional behavior in the brain. Each local
measure can be represented by a vector of 360 values (1 � 360). Seven
local measures including strength (S), clustering coefficient (CC), local
efficiency (LE), betweenness centrality (BC), eigenvector centrality (EC),
page rank centrality (PC) and degree (D) were computed in weighted
network. Strength is defined as the sum of neighboring edge weights of a
node, and degree is the number of edges connected to a node. In addition
to these local measures calculated in weighted network, other measures
like k-coreness centrality (KC) and flow coefficient (FC) were computed
for binary network.

2.4. Analysis of variability

For each subject, a vector of 5,414 measures (including 7 � 1 global
and 7 � 360 local measures in weighted network, 7 � 1 global and 8 �
360 local measures in binary network) was set up. All the measures were
standardized to [-1, 1] prior to subsequent analysis. To examine the inter-
group variability among EMCI, LMCI, AD and HC, we averaged all the
global and local measures within each group. Thus, a 4 � 5,414 matrix
representing the average of the four groups was formed. Ordered core
features (OCF) was proposed here to distinguish different stages toward
Alzheimer's disease. On the basis of previous studies [22, 23, 24] that
regional abnormalities in brain causes cognitive impairment, we tested
the hypothesis that significant alterations with specifically progressive
relationship (AD> LMCI> EMCI>HC or in the reverse order) must exist
in certain regions rather than the whole brain. Due to the unknown of
data distribution, non-parametric null hypothesis Kruskal-Wallis H test
followed by calculating a Bonferroni-corrected P-value for the pairwise
comparison was carried out to determine whether these results were
statistically significance among the four groups. IBM SPSS software was
used for statistics analysis in this study with the varying confidence levels
of 90% and 95%. Eqs. (5), (6), and (7) depicted the analysis above.

U1 ¼
8<
:Area

��MeasureðAreaÞ 2 〈
AD > LMCI > EMCI > HC
or
AD < LMCI < EMCI < HC

〉

9=
; (5)

U2 ¼fAreajPðKruskal Wallis H testðMeasureðAreaÞÞÞ<Criteriag (6)

U¼U1 \ U2 (7)

where Area is each of the 360 regions from HCP MMP. U1 is the set of
specific areas containing progressive relationship among groups, U2 is
the set of areas showing two levels of significant measure results, in
which 0.05 and 0.1 are considered as the criteria. U is the intersection of
U1 and U2.

To compare the variability of different HCP MMP areas measured by
metrics from BCT, coefficient of variation (CV), which was also known as
the relative standard deviation, was computedwithin each group. CVwas
defined as the ratio of standard deviation to mean value.

2.5. Supervised machine learning

In order to verify the effectiveness of set U drawn above, network-
based brain characteristic measures in each area of that were preserved
4

as the keep-in features in machine learning to distinguish subjects in
different groups. In the other areas, network measures were passed
through feature selection progress. Many algorithms [25, 26, 27] could
be used for reducing dimensions of training data before classification. In
this study, we carried out two steps to select the optimal features: filter
and wrapper feature selection. In filter-based selection, ReliefF algorithm
provided in MATLAB was applied to rank and select top scoring features.
It was classifier independent, which considered only interactions among
individual values rather than the final effectiveness of machine learning.
Strongly correlated features would be considered redundant and
assigned lower scores. Then top 1/5 of the ranked features with the
highest discrimination ability were treated as the candidate features for
the following wrapper-based selection. As a supervised strategy, wrapper
algorithm is classification dependent. The selected features vary with
machine learning methods. There mainly exist two methods in wrapper
selection: forward and backward sequential feature selection (FSFS and
BSFS). In FSFS, an empty feature set is initially created. Different features
are tested successively in training model. Features that help improving
classification accuracy would be added to the set. By contrast, in BSFS, a
set of the whole candidate features selected by Filter algorithm is initially
set up. Features that have no effect on recognition for groups would be
eliminated. We adopted both methods. Measures were tested randomly
by FSFS or BSFS strategy with the fixed core features, thus the chosen
feature vector varied each time. We evaluated the average performance
in recognition with these selected features.

Various classifiers, including decision tree, K-nearest neighbor
(KNN), support vector machine (SVM) and ensemble method, were
examined in this study. In the choice of parameters in SVM, first, we used
the Radial Basis Function (RBF) as kernel in libSVM library (-t ¼ 2) for
the non-linear classification. The type of SVM was set to be C-SVC (-s ¼
0 in libSVM). Then, the optimal combination of regularization parameter
C and Gaussian width could be searched by that gave the highest cross
validation accuracy. We used the easy/grid.py tool in libSVM to achieve
this. Balanced data were used in training, testing and validation to avoid
biased results. MATLAB Classification Toolbox was used to achieve
multi-class classification. Previously binary classification for EMCI,
LMCI, AD and HC were implemented, while it was complicated to be
directly applied in multi-class situation.

There are twoways to enhance the performance of a classifier: one-vs-
one [28] and one-vs-all [29]. In one-vs-all method, four binary classifi-
cation models were trained first, namely EMCI vs. others, LMCI vs.
others, AD vs. others and HC vs. others. Each subject was scored by these
four models to determine the probability it belonged to the class, and it
would be judged based on the highest score among the four results. In

one-vs-one, there are K �ðK�1Þ
2 binary classifiers for any two classes, in this

study K ¼ 4, resulting in 6 classifiers: HC vs. EMCI, HC vs. LMCI, HC vs.
AD, EMCI vs. LMCI, EMCI vs. AD, and LMCI vs. AD. Each classifier had a
decision about the subject. Finally, subject was classified with the most
votes.

To evaluate the performance of classifiers, four indicators were
computed in this study including true positive (TP), true negative (TN),
false negative (FN) and false positive (FP). N-fold cross validation was
employed for robust classification. The number N in cross validation is a
crucial tuning parameter that impacts model performance. In common
practice, it should be a large number. Considering the number of AD/MCI
patients available, we limited N to be 5 in this study. A larger one will
lead to few samples in each “fold”, which likely causes underfitting. Thus,
the whole training data were equally divided into five subsets. We chose
four subsets to train classifier and the remaining subset as testing data.
The process was repeated for five times, with different testing set at each
time. The finally accuracy was the average value of these five recogni-
tions results.

Four kinds of classification experiments were designed for EMCI,
LMCI, AD and HC: binary recognition, three-class recognition, four-class
recognition, and a special grouping in which two strategies of sampling
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were implemented: one randomly selecting 30 patients in the mix of
EMCI and LMCI, and the other randomly selecting 15 patients in group of
EMCI and LMCI respectively for the recognition of HC, MCI and AD with
balanced training data.

3. Results

Structural and functional MRI data from ADNI database were
analyzed in this study with 30 AD patients, 29 LMCI patients, 40 EMCI
patients and 33 HCs. To ensure the uniformity of data acquisition pro-
tocols and formats, all images were downloaded from ADNI2 (Philips
Medical Systems, MRI: matrix¼ 256� 256, slice thickness¼ 1.2mm, TE/
TR¼ 3.2/6.8 ms; fMRI: matrix¼ 64� 64, slice thickness¼ 3.3mm, slices
¼ 6,720, TE/TR ¼ 30/3000 ms). There is no significant difference in the
average age between the four cohorts. The average age was 75.6� 5.8 for
HC subjects (14 male, 19 female), 71.8� 6.5 for EMCI subjects (14 male,
26 female); 72.9 � 7.8 for LMCI subjects (16 male, 13 female), and 73.1
� 6.8 for AD patients (12 male, 18 female).

Figure 2 shows the seven global network measures in weighted and
binary network. For the purpose of comparison, each measure is
normalized to [0, 1]. Groups are distinguished in colors. The local
quantities of the network were calculated for nodal degree, nodal
strength, betweenness centrality, local efficient, clustering coefficient,
eigenvector centrality and page rank centrality. The areas showing sig-
nificant alterations with specifically progressive relationship (AD> LMCI
> EMCI>HC or in the reverse order) in weighted and binary network are
selected in Figure 3, respectively, and all of them make up the set U1

introduced in Sec. Analysis of variability. The areas presented the char-
acteristics in weighted (Figure 3L: (A) Betweenness Centrality, (B)
Strength, (C) Clustering Coefficient, (D) Local Efficiency, (E) Eigenvector
Centrality, (F) Pagerank Centrality, (G) Degree) and binary (Figure 3R:
(A) Strength, (B) Clustering Coefficient, (C) Local Efficiency, (D)
Betweenness Centrality, (E) Eigenvector Centrality, (F) Pagerank Cen-
trality, (G) K-coreness Centrality, (H) Flow Coefficient) network are
selected, respectively, and all of them make up the set U1 introduced in
Sec. Analysis of variability.

Figure 4 shows the areas with at least four network measures satis-
fying the OCF hypothesis. Among them, R-44 area has 8 measures with
AD > LMCI > EMCI > HC and R-PBelt has 7 measures with
AD<LMCI<EMCI<HC. Hence, all the areas in U1 must be validated by
significance test. Significance test results are calculated for weighted and
binary network. Only tuples (Area, BCT) with significance (P < 0.05) are
shown (in the following analyses, we also retained the results with P <

0.1, which are not presented here). Colors represent different levels of
significance. Areas in these significant points make up the set U2.

The final set U ¼ U1 \ U2 is shown in Table 1. For the relationship HC
< EMCI < LMCI < AD, Table 1 lists the area with P-value <0.05 (un-
derline) and 0.1 respectively. The highest CV values were found in set U,
Figure 2. Normalized glob
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including the clustering coefficient in R-AAIC area and the eigenvector
centrality in R-7AM area. By using the areas with network measure from
Table 1 as the core features that were fed into filter and wrapper feature
selection process, HC, EMCI, LMCI, and AD were distinguished by ma-
chine learning for binary classification and multi-class recognition. We
found that SVM always achieved the highest accuracy against decision
tree, KNN, and ensemble method we tested in this study. Five-fold cross
validation was carried out. During each of the five repetitions, only 4/5
samples were used in training and 1/5 samples were under tested. Thus,
the number of samples actually involved in modeling was less than the
original weighted data set. The receiver operating characteristic curves
(ROC) of both binary recognition and multi-class recognition are shown
in Figure 5. From Figure 5L (A)-(F) are binary classification results for HC
vs. EMCI, HC vs. LMCI, HC vs. AD, EMCI vs. LMCI, EMCI vs. AD and LMCI
vs. AD respectively. Figure 5R (A-B) are three-class recognitions, one for
HC vs. EMCI vs. LMCI and another for EMCI vs. LMCI vs. AD. Figure 5R
(C) is the full class recognition in which subjects of HC, EMCI, LMCI and
AD are mixed together. Figure 5R (D) shows the results of all groups
classification too, while EMCI and LMCI are labeled as one class: MCI.
Consequently, it is still three-class recognition. The TPR/FPR are the
averaged classification results from five-fold cross validation.

The accuracy was computed by averaging the TP rate (vertical axis
value) of the optimal cut-point pointed by arrow. In binary classification,
the average accuracies are as following: (HC vs. EMCI) ¼ 90.5%, (HC vs.
LMCI)¼ 92%, (HC vs. AD)¼ 95.5%, (EMCI vs. LMCI)¼ 86.0%, (LMCI vs.
AD) ¼ 87.0%, and (EMCI vs. AD) ¼ 88.5%. All the areas under ROC are
far larger than 0.50, which represents the superior behavior of the clas-
sifier. In three-class classification, the average accuracies are 77.7% for
HC vs. EMCI vs. LMCI and 75.0% for EMCI vs. LMCI vs. AD. The average
accuracy of four-class recognition is 53.3% when HC, EMCI, LMCI and
AD are mixed together. The average accuracy is 58.7% when EMCI and
LMCI are labeled as one class: MCI is essentially a three-class recognition
problem.

Figure 6 illustrates the distribution of the areas in set U, in which
network measures showed significant alterations with progressive rela-
tionship. The top row shows the left hemisphere, and the bottom row
shows for the right. A total of 30 network measures exhibit the pro-
gressive relationship in 21 HCP MMP areas in set U. We combine all the
chosen 21 areas together and draw them in each hemisphere, as shown in
Figure 7, a distinct banding area appears (only left hemisphere showed,
contoured with yellow lines). Most regions locate in the frontal lobe (6v,
6d, 55b, IFJp and area 44) and part of insular (FOP5, AAIC, AVI, MI).

4. Discussion

We proposed a hypothesis that progressive relationship AD> LMCI>
EMCI > HC or reverse order exists for some network measures in certain
functional regions rather than the whole brain. In contrast to previous
al network measures.



Figure 3. L: Distribution of areas satisfying OCF hypothesis in weighted network as horizontal axis. (A) Betweenness Centrality, (B) Strength, (C) Clustering Coef-
ficient, (D) Local Efficiency, (E) Eigenvector Centrality, (F) Pagerank Centrality, (G) Degree; R: Distribution of areas those satisfied OCF hypothesis in binary network.
(A) Strength, (B) Clustering Coefficient, (C) Local Efficiency, (D) Betweenness Centrality, (E) Eigenvector Centrality, (F) Pagerank Centrality, (G) K-coreness Centrality,
(H) Flow Coefficient. Vertical axis indicated BCT local measure and horizontal axis was the HCP MMP areas.
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studies that all of the functional connectivity based network measures
were used directly in training model as candidate features, we exploited
the variability of fine-grained human brain parcellation among subjects
in HC, EMCI, LMCI and AD. Network measures in these special areas with
significant alterations were treated as the keep-in features and classified
with training model to validate their effectiveness in distinguishing
different levels of cognitive impairment or even Alzheimer's disease.
Combining with statistical method and machine learning, a total of 30
network measures distributing in 21 HCP MMP areas showed significant
alterations and the accuracy of binary classification exceeds 90%. Most of
the areas locate in the frontal lobe and insular of the brain.

It is impossible to discern any distinguishable patterns from 5,414
global and local measures directly, and it is also a very challenging and
exhausting work to do feature selection process among such high data
dimensions in machine learning. Under the hypothesis proposed in this
study, we reduced the number of dimensions to 359 of which 180
network measures present the progressive relationship of AD > LMCI >
EMCI > HC and 179 in the reverse order. Tested by different levels of
statistical analysis (P-value < 0.1 and 0.05), 30 core network measures
are finally chosen which shows significance alterations. These 30 mea-
sures mainly locate in the areas of Premotor Cortex (Inferior Premotor
Cortex L-6v, Superior Premotor Cortex R-6d and R-55b that sits between
them), Inferior Frontal Cortex (L-p47r, L-IFJp and R-44), Insular and
Frontal Opercular Cortex (Frontal Opercular areas L-FOP5 and R-FOP5,
Middle Insular area L-MI, Anterior Ventral Insular area L-AVI and Ante-
rior Agranular Insular Complex R-AAIC), Early Auditory Cortex (R-
Figure 4. Top half of the histogram of areas that satisfy the hypothesis. A) Areas pre
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PBelt), Superior Parietal Cortex (L-7Pm and R-7Am), Anterior Cingulate
and Medial Prefrontal Cortex (L-33pr), Medial Temporal Cortex (peri-
hippocampal areas 1, L-PHA1), Orbital and Polar Frontal Cortex (L-
10pp), Ventral Stream Visual Cortex (L-VVC), Dorsal Stream Visual
Cortex (L-V3B), and its superior neighbor Inferior Parietal Cortex (L-IP0
and L-IP1), as shown in Figure 6. Symmetry in hemispheres can be found
that both left and right FOP5 areas are significantly altered with the
status HC < EMCI < LMCI < AD, and adjacent area showing the same
pattern can be found in the contralateral hemisphere with most regions,
like L-6v and R-6d, L-7Pm and R-7Am, L-p47r and R-44. It is in consensus
with previous report that symmetrically distributed pathological changes
are accompanied with brain degeneration [30].

Most brain regions shown in Figure 7 locate in the frontal lobe and
part of insular. The frontal lobe contains most of the dopamine neurons in
the cerebral cortex, the dopaminergic pathways are associated with
attention, short-term memory tasks, planning and motivation. There is
considerable evidence to suggest that the frontal lobes undergo struc-
tural, functional, and pathological changes that ultimately have negative
effects on cognitive functioning [31]. Sacuiu et al. found that chronic
depressive symptomatology in mild cognitive impairment was associated
with frontal atrophy rate that hastens conversion to Alzheimer dementia
[32]. Jeremy Koppel demonstrated that psychosis in Alzheimer's disease
was associated with frontal metabolic impairment and accelerated
decline in working memory [33]. Olazar�an found that depressive
symptoms were related to atrophy in the left precentral gyrus (Brodmann
area 6, BA6) [34]. Brodmann area 6 participates in the capacity of
sent progressive relationship of AD > LMCI > EMCI > HC. B) The reverse order.



Table 1. HC<EMCI<LMCI<AD or HC>EMCI>LMCI>AD with P-value<0.1 or
0.05 (only underline).

Area BCT Order Network P-value

R-44 S Positive Weighted 0.031

LE Positive 0.011

EC Positive 0.008

D Positive 0.025

L-IP0 EC Positive 0.091

R-55b LE Positive 0.043

R-FOP5 EC Positive 0.072

L-IP1 CC Positive 0.060

L-V3B EC Positive 0.035

L-p47r BC Positive 0.052

L-6V BC Positive Weighted 0.039

R-44 S Positive Binary 0.006

EC Positive 0.041

L-V3B S Positive 0.029

L-FOP5 BC Positive 0.044

L-10pp BC Positive 0.079

L-MI BC Positive 0.092

L-IP1 CC Positive 0.093

R-7AM EC Positive 0.082

R-6d BC Positive 0.072

R-FOP5 EC Positive 0.095

L-7pm BC Positive 0.060

L-IFJp BC Positive Binary 0.085

R-AAIC CC reverse Weighted 0.024

L-AVI LE reverse 0.063

L-PHA1 LE reverse 0.080

L-VVC BC reverse Weighted 0.099

R-PBelt PC reverse Binary 0.059

L-33pr LE reverse 0.074

L-IP1 FC reverse 0.093

*Strength (S), Local Efficiency (LE), Eigenvector Centrality (EC), Degree (D),
Clustering Coefficient (CC), Betweenness Centrality (BC), Page-rank Centrality
(PC), Flow Coefficient (FC).

Figure 5. L: ROC curves that illustrated the behavior of trained model in binary recog
EMCI vs. AD, (F) LMCI vs. AD; R: ROC curves that illustrated the behavior of trained m
AD, (C) HC vs. EMCI vs. LMCI vs. AD, (D) Groups of EMCI and LMCI were treated a
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temporarily holding information and having that information rapidly
accessible [35]. In our study, a large part of BA6, including the superior
premotor 6d, area 55b and the inferior premotor 6v, are found significant
changes. This is not only in agreement with the previous results, but also
further reveals the affected cortical subdivisions. Other researchers
mentioned that the regional atrophy of the insular cortex was associated
with neuropsychiatric symptoms in AD patients [36], and some of the
behavioral abnormalities in AD might reflect insular pathology [37]. We
elaborate the regions that alter the most in network-based measures in
the framework of HCP multi-modal parcellation. As far as we know, it is
the first time to take advantage of such a fine-grained brain parcellation
to analyze Alzheimer's disease.

Binary andmulti-group classification results show the advantage of using
the 21 chosen brain areas for recognition in machine learning. Area under
the ROC is equal to the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative one [38].
For the binary classification, the highest accuracy rate (95.5%)was found in
the task of HC vs. AD, and the lowest value (86%) was in EMCI vs. LMCI. It
can be interpreted that the smaller the difference between groups, the harder
to separate them with machine learning. Both three-group classification
results show an average accuracy rate about 76%. For the most difficult
four-group classification, the highest AUC value reaches 0.77 for the
recognition of EMCI group, and the lowest AUCvalue is 0.55 for the group of
LMCI. The average AUC is 0.65. If groups of EMCI and LMCI are treated as
one group of MCI, the AUC of MCI has the highest value of 0.78. We realize
that the AUC fluctuation may be related to the number of subjects acquired
(HC¼ 33, EMCI¼ 40, LMCI¼ 29 and AD¼ 30). As mentioned previously,
the imbalance of training data affects classification results [39]. Classifica-
tion of HC,MCI andADwith balanced training data is carried out (Figure 5R
(D)). The accuracies in this special grouping are all floating around 60%.
Compared with two-class recognition, it is closer to the result of four-class
recognition (53.3%) rather than those in three classes recognition (above
75%), although we manually label the patients into three groups: HC, MCI,
and AD. The ADNI database introduced EMCI in 2009 and LMCI in 2011 by
the neuropsychological assessment of MMSE or Wechsler Memory Scale
(WMS) tomeasure cognitive impairment. The better recognition accuracy of
classifying EMCI and LMCI as two groups rather than one MCI group sug-
gests that there exists still a gap between early and lateMCI patients, and it is
inappropriate to classify them into one group in general.
nition. (A) HC vs. EMCI, (B) HC vs. LMCI, (C) HC vs. AD, (D) EMCI vs. LMCI, (E)
odel in multi-class recognition. (A) HC vs. EMCI vs. LMCI, (B) EMCI vs. LMCI vs.
s one class: MCI.



Figure 6. Distribution of areas that showed sig-
nificant alterations with progressive relationship.
All these areas formed the set U, which is
described in Section: Analysis of variability
above. A)-D) are for the left hemisphere with
views from the lateral, posterior, anterior and
medial perspectives. E)-H) are for the right
hemisphere with views from the lateral, anterior,
posterior and medial perspectives. (Drawn in
HCP Connectome Workbench v1.3.2, https://
www.humanconnectome.org/software/connect
ome-workbench).

Figure 7. All the chosen 21 areas are putted together in each hemisphere (here shows the left), and a distinct banding area can be seen.

J. Sheng et al. Heliyon 7 (2021) e07287
The sample size in machine learning is a crucial factor that impacts
the model performance. To ensure the reproducibility of the results, the
uniformity of data acquisition protocols was imposed in this study,
resulting in fewer samples. It is different from the common machine
learning research in which plenty samples are engaged in training and
testing. A limited sample size usually leads to model underfitting. Spe-
cifically, both the accuracies in training and testing will not perform well
enough. This requires additional data preprocessing methods like boot-
strapping to enhance the robustness of results. Second, only two kinds of
monotonic progressive relationship among brain areas are taken into
account. However, the deterioration of Alzheimer's disease is such a
complex process, there must be more manifestations of brain functional
degeneration besides these two relationships in a longitudinal scale.
Hence, other criteria of core feature selection can be introduced to reflect
the variation of network measures in the progression of Alzheimer's
disease and help to differentiate HC, EMCI, LMCI, and AD.

5. Conclusion

A non-HCP preprocessing method was used to prepare and parcellate
structural and functional brain MRI data into 360 areas. Through analysis
of variability which combined hypothesis and significance tests, we found
a set of areas in which the network measures significantly changed in the
order of HC> EMCI> LMCI> AD or in the reverse order. Areas in this set
mainly locate in the frontal lobe and insular. It is the first time a distinct
banding area to be observed as far as we know. We call these network
measures the ordered core features (OCF). By preserving the OCF set as
keep-in features in classifiers, superior performance in multi-class recog-
nition was obtained. Our results also support the EMCI/LMCI inclusion
criteria introduced by ADNI based on neuropsychological assessments.
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